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Table 1. 'Theoretical' and experimental structure factors for  some ' sum'  reflections o f  KCI at 300 K 

hkl 220 222 400 224 442 600 444 800 I 0,0,0 
LDA fit (/~ = 2.00/~2, R = 0.0207) 21.9 18.6 16.2 13.0 9.88 9.88 7.86 5.88 3.17 
HF fit (/~=2.01/~2, R =0.0255) 21.9 18.6 16.2 12.9 9.88 9.88 7.86 5.89 3.17 
Schmidt et al. (1985) 22.0 18.5 15.8 12.9 9.92 9.66 7.81 5.89 3.22 
Patom~iki & Linkoaho (1969) 21.9 18.4 16.4 12.9 9.78 9.78 7.48 5.91 2.99 

factor with the recipe given by Zunger & Freeman 
(1977) (see footnote 53) agree well with the LDA 
structure factors for the static crystal computed by 
the latter authors and reasonably well with the X-ray 
powder data by Merisalo & Inkinen (1966) reduced 
to the static crystal [see Zunger & Freeman (1977), 
Table IV, last two columns].* 

There is a clear tendency in both the theoretical 
and experimental structure factors at intermediate hkI 
to be higher than the H F  free-ion values. 

We are most indebted to Professor Colella of Pur- 
due University for making his experimental data 

* The resulting tables have been deposited with the British 
Library Lending Division as Supplementary Publication No. 
SUP39799 (2 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CHI 2HU, England. 

available to us prior to publication, and for many 
stimulating discussions. 
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Abstract  

The implications of quantum-chemical concepts for 
the simultaneous interpretation of charge and spin 
density data are discussed. It is proposed that the 
scattering of the electrons involved in the metal-  
ligand interaction, on which both X-ray and polarized 
neutron information is available, be expressed in 
terms of the wavefunction, while the remainder of 
the electron distribution be described in terms of the 
multipole formalism. The discussion is based on a 
three-electron subsystem for metal-l igand bonding. 
At the restricted molecular orbital level it is shown 
that the magnitude of the overlap spin density is much 

0108-7673/85/020177-06501.50 

larger than that of the overlap charge density, which 
may be close to zero when the electronegativity differ- 
ence between metal and ligand is considerable. Spin 
polarization is introduced at the unrestricted 
molecular orbital level and implies that different K 
parameters should be applied to the a and /3 elec- 
trons. Its effect on the spin and charge distribution 
is of first and second order respectively. The effect of 
correlation, described by the mixing of two or more 
configurations, leads to an apparent increase in 
covalency. The formalisms discussed may be applied 
in a stepwise manner, first at the spin-restricted level 
and subsequently with the inclusion of spin polariza- 
tion and correlation effects. 
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Introduction 

One of the main goals of accurate diffraction work 
is to obtain information on the electronic ground-state 
wavefunction from the experimental measurements, 
and to derive from this information a better physical 
understanding of the bonding in molecules and solids. 
For magnetic systems we can obtain not only the 
charge density from the elastic X-ray scattering but 
also the magnetization distribution by the polarized 
neutron technique. (See, for example, articles by 
Brown, Forsyth, Schweitzer in Becker, 1980; Tofield, 
1975; Mason, 1982, and recent publications by Figgis 
and coworkers: Figgis, Williams, Forsyth & Mason 
1981; Figgis, Reynolds & Mason, 1983; Figgis, 
Mason, Smith, Varghese & Williams, 1983). The com- 
bination of both techniques is especially powerful 
and can lead to detailed information on, for example, 
the nature of metal-ligand bonding (Coppens, 
Holladay & Stevens, 1982; Holladay, Leung & 
Coppens, 1983). As charge and spin distributions are 
manifestations of the same wavefunction, both sets 
of experimental measurements should be interpreted 
in a mutually consistent manner. 

Let us assume the metal-ligand interaction to be 
limited to the first neighbors of the metal. We denote 
the associated electronic wavefunctions, composed 
of the relevant valence orbitals only, by ~bA, and the 
remaining part as ~bB. Then 

1I ,r = z4[ ~A~JB], ( 1 ) 

where ,4 stands for an antisymmetrizer. If we go from 
tF to the two spin components of the electron density, 
we may write 

p, = p,,~ + pB~ (A = I', ,1,). 

But B is composed of paired electrons, and as a result 

Pm = PB$ = pB/2.  

Therefore, the charge density p = p, + p$ and the spin 
density s = p , - p ~  are only coupled through PAt and 
PA~. We propose, in order to analyze X-ray and polar- 
ized neutron results simultaneously, to treat p8 at the 
usual multipole analysis level (Stewart, 1976; Hansen 
& Coppens, 1978). However, the few-electron subsys- 
tern M on which both X-ray and polarized neutron 
information is available can be interpreted in terms 
of the wavefunction 0A itself. 

It is the purpose of the present paper to justify 
such a treatment and to discuss the complementarity 
of the two sets of observations. 

Wave function description of metal-ligand interaction 

In order to get a clear understanding of the problem, 
we shall restrict the discussion to a simple three-spin 
system. Such a case occurs for a square-planar com- 
plex when one of the d orbitals is coupled with a 

symmetry-adapted combination of s and p on adja- 
cent ligands. 

Molecular  orbital scheme 

Let ~ be the metal orbital and X the ligand one (in 
a real case with more electrons, X could be a combina- 
tion of ligand orbitals and a metal orbital other than 
~). The ionic starting configuration is thus [q~X2]. The 
choice of the relevant ~ and properly symmetry- 
adapted X is dictated by crystal-field effects. The ionic 
wavefunction is 

¢/= [3!]-'/=1~x21. (2) 
As discussed by Freeman & Frankel (1967), the non- 
orthogonality of ~ and X, 

S = (~plX) # O, (3) 

results in a typical ionic repulsion. Let ~" be the 
orthogonalized metal orbital ((~']X)= 0): 

~ ' = ( 1 - $ 2 ) - ' / 2 { ~ - S x } .  (4) 

6 i  can also be wr i t ten  as 

¢~' = [ 3 !]-'/21~x21. (5) 

From (5) we get the spin-dependent ionic density: 
i _~-2 i 2 

PT + X 2 Pt = X • (6) 

These densities were, at the crystal-field level, 

p = 2+x P =Z. (7) 
We therefore conclude that the ionic interaction only 
affects the majority spin distribution, through an anti- 
bonding effect (we expand to second order in S): 

p ~ - p ~ =  S2~p2 + S2X2-2S~Px. (8) 

Covalent  interaction 

The (~,X) overlap implies electron hopping 
between metal and ligand. ~p and X will mix through 
covalent interaction. Starting from two singly 
occupied ~t and Xt, such a mixing will have no effect 
on the 1' spin density. The bonding orbital, denoted 
by r/, is written as 

~7 -- [1 ÷ y2÷ 2yS]-'/2{X + y~}, (9) 

where the relevant coupling parameter 3, could in 
principle be obtained by energy minimization. The 
covalent-lcvel wavefunction is thus 

0< = [3 !]-'/2l~x4l, (10) 

from which we get the spin-dependent densities (up 
to second order in T and S): 

c ~-2 
Pt + X 2 - - P ~  (11) 
p[ = ~/2 = [ 1 - 72 - 278]X 2 + 72~p 2 + 2 Y~PX. 

The previous results can be summarized in terms of 
usual charge and spin densities and deformation 
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densities: 
p~=p~+p[=p°+Spc 
p0= 

6p c = 

sC~ 

s O ~  

c$s c = 

q~2+2X2 (12) 

( s ~ + 3"~)~ + ( s ~ -  3"~- 2 3"S)x 2 + 2 ( 3 '  - S)~x 

p ~ - p ~ = s ° + S s  ~ 

~o 2 (13) 

(S 2 _ 3'2)~ o2 + (S 2 + 3'2 + 2 3"S)x 2 -  2(3' + S)cPX. 

Discussion 

In situations with rather strong covalency, 3' is 
larger than S. In such cases, there is a charge transfer 
from the ligands to the metal, and a charge build up 
in the internuclear region. But the spin density 
exhibits an 1' spin transfer from the metal to the 
ligands, with a quite strong depletion in the overlap 
region. This corresponds to a reduction of the mag- 
netic moment on the metal atom as has often been 
observed in polarized neutron studies (see for 
example Rakhecha & Satya Murphy, 1978). The mag- 
nitude of the overlap spin density is much larger than 
that of the overlap charge density. Therefore, though 
it may be redundant to refine the overlap term in an 
X-ray determined charge density, the inclusion of the 
overlap spin density in the polarized neutron data 
refinement appears essential. It does not imply an 
extra parameter and cannot easily be expressed 
though an atom-centered multipolar expansion. This 
is why we think it preferable to use a scattering 
formalism based on the 'exact' expansion (12) and 
(13). 

If the covalency is small, we may get 3"<S 
(Hubbard, Rimmer & Hopgood, 1966; Watson & 
Freeman, 1960). In that case, there is still a charge 
transfer to the metal, but coming from both the ligand 
and the bond region. It is quite an interesting situation 
with a covalent interaction and a negative overlap 
density. The spin density exhibits a transfer from the 
interatomic region to both the metal and ligand. 
Therefore, the spin density at the metallic sites is 
higher than in the non-interacting case, which is 
opposite to the generally assumed situation where 
one expects a reduction of the 'ionic magnetic 
moment'  due to covalency. Let us be more quantita- 
tive about this situation. Let H be the effective one- 
electron Hamiltonian. We denote by e~ =(~0lHl~o> 
the energy of an electron localized on the metal, and 
by eL = (Xl HIX> the energy of the electron when local- 
ized on the ligand. Let 13 be the resonance energy 
/3 = (x[nlq~), which is negative. We can assume eL< 
e~ <0,  because the ligand is more electronegative 
than the metal. To second order in perturbation 
theory, the energy of the bonding orbital is 

( /3 - e L S )  2 
E ~ E L  

EM --  EL 

and the covalent coupling constant Y becomes 

We get 

(/3- e,S) y = 
EM --  EL 

y u - 1  

S -  1 - x '  

where x = eM/eL is always smaller than l, and u = 
fl/eLS. Thus, the condition becomes 

y >  S¢:~/3 < S[2eL-- eM]. 

In most semi-empirical methods, one assumes 

/3 = KS[eL+ eM] with K - 0.75. 

We finally obtain the following condition: 

3"> SC:>eM> 2 -  K 
eL I + K "  (14) 

In other words, T < S  when the electronegativity 
difference between metal and ligand is large enough 
for (14) to be contradicted (x<5 /7 ) .  

Unrestricted molecular orbital theory-spin polarization 

We have assumed that 1' and $ spin orbitals were 
solutions of the same one-electron Hamiltonian H. 
The mean-field Hartree-Fock Hamiltonian is written 
as 

H =  T+ Vc+ Vex, (15) 

where Vc is the Coulomb average potential, T the 
kinetic energy operator and Vex the average exchange 
potential between one electron and all the others. But 
the exchange process can only take place between 
parallel spins. Since the number of 1' and $ spins are 
different, we expect Vex(l'l') # Vex(~). Assuming ]' to 
be the majority spin state, Vex(l'l')< Vex(~$). The 
approximation (15) assumes 

Vex = 2![ Vex(tt)-I - Vex(~,,~)]. (16) 

If we relax this constraint, we have to deal with 
two-coupled spin-dependent Hamiltonians: 

H ~ = H - 8  H $ = H + 6  

with 

6 = ~[ Vex(~) -  Vex(l'l')] > 0. (17) 

The first-order wavefunctions become 

0 t = ~ + x ~  * 0 ~ = ~ - x 0  *, (18) 

where 0* is normalized and orthogonal to 0 and is 
a combination of excited states of H ;  x is given by 

x = ( 6 ) l A E ,  (18') 

where AE is some average excitation energy in the 
spectrum of the Hamiltonian H. There is a spatial 
decoupling of paired electrons. This is the spin 
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polarization effect. The charge density for a pair of 
electrons is 

P(T$) = qJ~ + 0~ = 2~ b2 + 2x2q ~.2 

and the perturbation is therefore of second order and 
at present beyond any possible experimental observa- 
tion. However, a small spin density appears, 

s ( T $ ) = O ~ - O ~ = 4 x O 0  *, 

which is of first order in x. We conclude that spin 
polarization can only be detected in a spin polariza- 
tion can only be detected in a spin density distri- 
bution. 

Let us try to draw some practical guidelines for 
incorporation of spin polarization in spin density 
refinement. The qualitative effect is a net (TI') 
attraction and thus the occurrence of slight ~ spin 
densities at sites neighboring the magnetic site. 
Though expected to be small, this is at the origin of 
the occurrence of ESR at protons in organic radicals 
(Gillon, 1983; Gillon, Becker & Ellinger, 1983). In 
the case of transition-metal ions, the effect has been 
analyzed by Watson & Freeman (1960), who could 
separate out the radial dependence of 1' and ~ elec- 
trons of the ion: one expects the T spin wavefunction 
to contract with respect to the $ spin one. It therefore 
seems reasonable to decouple the radial dependence 
of ~01, and q% on the metal. This can be achieved 
through a modification of the screening constant K 
(Coppens, Guru Row, Leung, Stevens, Becker & 
Yang, 1979): 

q~T = K?/2~P(KT r)  

~P~ ~- K3~/2 (~( K~ r)  

K 1, = K + A K / 2  K+ = K -- A K / 2  

and  K is the  o r i g i n a l  sc reen ing  cons tan t .  
From Watson & Freeman's calculations, we expect 

A K / K  ~ 1 to 2%. 
As far as the metal-ligand wavefunction 0 is con- 

cerned, we can summarize the results through the 
following expression, analogous to (l 1): 

pt = [1 + S~](,¥2-a t- ~o~)-2Srq~,rX 
(19) 

p+ = [ 1 - 3'2 _ 23 'S+]x2 + 3'2(p~ + 2 3'q~X. 

To go beyond this approach would imply that we 
relax condition (1) by assuming 

PBT # fiB J,. 

If PB is represented through a multipolar expansion, 
this could be done by a simple modification of the 
multipolar expansion at the metal and ligand sites. 
The metal contribution to PB comes from the core 
electrons: one may decouple T and ~ spin populations 
as well as their radial dependences. At the ligands, 
we should only decouple T and + populations. 

Beyond the molecular orbital description 

So far we have assumed a MO description of the 
metal-ligand interactions. In a way, the spin 
polarization effect in the above treatment is equivalent 
to including correlation among antiparallel spin elec- 
trons, but parallel electrons remain uncorrelated. We 
will give here some indications about the effect of 
correlation on the spin and charge densities. Follow- 
ing Hubbard et al. (1966), let us write the three- 
electron wavefunctions as 

q' --(3!)-'/.2[ 1 + Y 2 + 23"s]-'/z{I,cx~l + 3'1~x¢1}, (20) 

where covalency appears as the mixing of the two 
configurations ~X 2 and ~2 X. The latter configuration 
corresponds to a situation with two electrons on the 
metal and only one in the ligand: covalency is thus 
associated with an electron transfer from the ligand 
to the metal. It is clear that for this ~p2 X configuration 
the orbitals should be different from those describing 
the ionic original ~X 2 state. The presence of an extra 
electron in the metal would cause an expansion of 
to ~p' and a corresponding contraction of X to X'. 
Slater's rules would predict a K effect of the order of 
5 to 10%. Thus, while the MO picture is, apart from 
normalization, 

~M° = 0, + 3'q,2 o, = I~x~?l 02= I~x,~l, 

the correlated wavefunction is 

~cor = ~,, + 3'0~ q'~ = I~'X"P'I. (21) 

This is of course the first term of an infinite expansion 
in terms of excited configurations and it cannot be 
proved that (21) is the leading term (Sugano, Tanaka 
& Kamimura, 1970). If ~ is the total Hamiltonian, 
one gets 

[<~0,1~102>-- E,(~blIO2)] 2 
E M O =  E l - 

E2 - 21 

<q"l~102)-- E,(~,102) 
3'= 

E2 - E1 
(22) 

[<0,1~el0~>- E,<0,1~O~>] = 
E ¢°r = El - 

E ~ -  El 

<q,,l~10$>- E,<~0,1q&> 3r = 
E ~ -  EI 

Owing to the orbital optimization in the configuration 
0~, E~ is significantly smaller than E2 and thus 3" 
will be larger than 3', by a factor which may be very 
significant (3"/3, can approach 2). It is of course in 
principle feasible to write down the charge and spin 
density functions associated with a wavefunction such 
as (21 ). The calculation is lengthy but straightforward 
and will not be further pursued here. 

The major pertinent effect is the occurrence of an 
apparent larger 3" than expected from a MO scheme. 

To end this discussion, we should point out that 
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apparent configuration mixing with low-lying excited 
configurations may also occur through spin-orbit 
coupling. This has been observed to be of significance 
in interpreting the ESR spectra of porphyrins and 
phthalocyanines (Lin, 197.9). A comparison of charge 
and spin density results led Coppens et al. (1982) to 
the conclusion that configuration mixing plays a sig- 
nificant role in the spin-density distribution. 

Simplifications for a refinement procedure 

So far we have discussed some theoretical implica- 
tions of the metal-ligand interaction for the simple 
case of a three-spin system. It appeared opportune 
to separate the density into two parts, one associated 
with the metal-ligand interacting orbitals (PA) and 
the other with the remaining diamagnetic part of the 
system (p~). 

Let M denote the metal site and L(i) (i = 1, n) the 
nearest ligands. We assume that the contribution of 
B to the charge density is well described in terms of 
the usual multipole expansion (Hansen & Coppens, 
1978). 

It is possible to represent PB, L(0 in terms of a 
multipolar expansion, with decoupled populations of 
valence electrons with different spins. 

PB, L(i) ---- Pi, core/ 2 + K 3i Px,oPo(Kit) 

+~', PxitmK~3Ril(K[r)ytm± (A=~ ' or $). 
lm 

(23) 

A slight contribution to the spin density comes from 
the difference between Pt and P~. This density is 
restricted to the orbitals that do not contribute to the 
direct coupling with the metal. 

Let us now consider the B orbitals of the metallic 
site. Its core electrons can be slightly spin decoupled 
through polarization, at least for 3s, 3p electrons. If 
we call the normalized core density pc(r), we may 
write 

PB, M, = PMTK~Pc,(K,r) K¢= 1 + AK/2 

pB, Mj, = PM~K3~pc~(K~r) Kj= 1 --AK/2. 

In terms of form factors let f i (S )  be the form factor 
associated with pc (S is the scattering vector) and 
f ' ( S )  its derivative with respect to S. 

fB, Mt= PMt[f~--( SAK/2 ) f  "] 
(24) 

fB,~ ~ = P~ ~[fc + ( SAK / 2)f']. 

The X-ray form factor is up to second order unper- 
turbed: 

fB, M(X-ray) = ( PMi + PM~)f~- 

The neutron form factor is of first order and equal to 

fB, M(neutrons) = ( P M ? -  P ~ ) f c  

- ( P M t + P M ~ ) ( S A K / 2 ) f ' .  (24') 

Notice that the spin polarization over the whole sys- 
tem should sum up to a zero net spin, which will lead 
to a constraint involving the monopolar population. 

We will now deal with the density associated with 
the metal-ligand wavefunction I]tA. The Fourier trans- 
formation of (19) will involve one-center terms (X 2 
and ~ or ~p~) and two-center terms (~J,X, ~X).  

If one starts from Hartree-Fock atomic orbitals 
(Clementi, 1965; Clementi & Roetti, 1974), it is pos- 
sible to expand those densities in terms of Gaussian 
or Slater-type functions (Stewart, 1969, 1970). Within 
such an expansion, modified by a proper K u rescaling 
of the radial behavior, the one-center terms can be 
rigorously expanded as a linear combination of the 
multipoles. The scattering-vector orientation depen- 
dence of the two-center terms is more difficult but 
one can use, for example, the method already 
developed by Coppens, Csonka & Willoughby ( 1971 ). 
As stalYed earlier, it seems sufficient to differentiate 
Ct from C j, through a linear variation with K t and K,. 
The great advantage of introducing simultaneously 
charge and spin density is that it allows examination 
of the wavefunction behavior associated with the 
m,etal-ligand interaction. 

In practice, the approximations discussed above 
should be applied in a stepwise manner. After a 
critical evaluation of a multipolar refinement, the 
separation suggested by (1) may be introduced, first 
at the spin-restricted molecular level, and sub- 
sequently with the inclusion of spin polarization and 
correlation effects. 

Finally, the present discussion does not apply to 
the interesting organic radicals, that have been 
recently studied (Gillon, 1983). In the case of 
diphenylpicrylhydrazyl, the alternant nature of the 
conjugated system reveals itself from the experimntal 
spin density and one needs an extensive wavefunction 
that spans the whole conjugated skeleton. We also 
discarded the case where coupling between metallic 
sites occurs, for example through an antiferromag- 
netic coupling (as in yttrium iron garnet; Bonnet, 
Delaplane, Fuess & Becker, 1979): such cases might 
be dealt with by a proper combination of the results 
for individual clusters, each being treated along the 
lines discussed above. 

This collaborative work was made possible by a 
NATO travel grant, which is gratefully acknowledged. 
The research is also supported through NSF grant 
CHE7905897 to PC. 

References 

BECKER, P. (1980). (Editor) Electron and Magnetization Densities 
in Molecules and Crystals. New York: Plenum Press. 

BONNET, M., DELAPLANE, A., FUESS, H. & BECKER, P. (1979). 
J. Chem. Phys. Solids, 40, 863-876. 

CLEMENTI, E. (1965). IBM J. Res. Dev. Suppl. 9, 2. 



182 SIMULTANEOUS INTERPRETATION OF CHARGE AND SPIN DENSITY DATA 

CLEMENTI, E. & ROETTI, C. (1974). At. Data Nucl. Data Tables, 
14, 177-478. 

COPPENS, P., CSONKA, L. N. & WILLOUGHBY, T. V. (1971). Acta 
Cryst. A27, 248-250. 

COPPENS, P., GURU ROW, T. N., LEUNG, P. C. W., STEVENS, 
E. D., BECKER, P. & YANG, Y. W. (1979). Acta Cryst. A35, 
63-72. 

COPPENS, P., HOLLADAY, A. & STEVENS, E. O. (1982). J. Am. 
Chem. Soc. 104, 3546-3547. 

FIGGIS, B. N., MASON, R., SMITH, A. R. P., VARGHESE, J. N. & 
WILLIAMS, G. A. (1983). J. Chem. Soc. Dalton Trans. 4, 703-712. 

FIGGIS, B. N., REYNOLDS, P. A. & MASON, R. (1983). J. Am. 
Chem. Soc. 105, 440-443. 

FIGGIS, B. N., WILLIAMS, G. A., FORSYTH, J. B. & MASON, R. 
(1981). J. Chem. Soc. Dalton Trans. pp. 1837-1845. 

FREEMAN, A. J. & FRANKEL, R. B. (1967). In Hyperfine Interac- 
tions. New York: Academic Press. 

GILLON, B. (1983). Thesis, Univ. of Paris. 
G1LLON, B., BECKER, P. & ELLINGER, Y. (1983). Mol. Phys. 48, 

763-774. 

HANSEN, N. K. & COPPENS, P. (1978). Acta Cryst. A34, 909-921. 
HOLLADAY, A., LEUNG, P. C. W. & COPPENS, P. (1983). Acta 

Cryst. A39, 377-387. 
HUBBARD, J., RIMMER, D. E. & HOPGOOD, F. R. A. (1966). Proc. 

Phys. Soc. London, 28, 13-36. 
LIN, W. C. (1979). In The Porphyrins, edited by D. DOLPHIN, Vol. 

IV pp. 255-377. New York: Academic Press. 
MASON, R. (1t)82). In Electron Distributions and the Chemical 

Bond, edited by P. COPPENS & M. B. HALL, pp. 351. New York: 
Plenum Press. 

RAKHECHA, V. C. & SATYA MURTHY, N. S. (1978). J. Phys. 
Chem. 11, 4389-4404. 

STEWART, R. F. (1969). J. Chem. Phys. 50, 2485-2495. 
STEWART, R. F. (1970). J. Chem. Phys. 52, 431-438. 
STEWART, R. F. (1976). Acta Cryst. A32, 565-574. 
SUGANO, S., TANAKA, K. & KAMIMURA, H. (1970). Multiplets 

of Transition Metal Ions in Crystals. New York: Academic Press. 
TOFIELD, B. C. (1975). Struct. Bonding (Berlin), 21, 2-87. 
WATSON, R. E. & FREEMAN, A. J. (1960). Phys. Rev. 120, 1125- 

1134, l134-1141. 

Acta Cryst. (1985). A41, 182-189 

Many Algebraic Formulas for the Evaluation of Triplet Phase lnvariants from 
Isomorphous Replacement and Anomalous Dispersion Data 

BY JEROME KARLE 

Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, DC 20375, USA 

(Received 5 July 1984; accepted 18 October 1984) 

Abstract 
An algebraic analysis is presented for the calculation 
of triplet phase invariants from isomorphous replace- 
ment and anomalous dispersion data. The analysis 
applies when there is one type or one predominant 
type of anomalously scattering atoms. The use of the 
formulas largely parallels a recent approach that is 
based on a General Rule for evaluating triplet phase 
invariants. It involves the mixing of terms from 
isomorphous replacement with various types of terms 
arising in anomalous dispersion or the mixing of 
various terms arising in anomalous dispersion alone. 
The mixing of terms gives rise to a myriad of formulas 
that can generate values anywhere in the range from 
-Tr to 7r. In the tests performed, it was found that 
the algebraic formulas offered an improvement in 
accuracy over that obtained from the General Rule. 
The accuracy is potentially high but depends ulti- 
mately on the reliability of the experimental data. 

Introduction 
Several analyses based on the mathematical and 
physical properties of diffraction data from isomor- 
phous replacement and anomalous dispersion experi- 
ments have led to a large number of formulas for 
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evaluating triplet phase invariants. The formulas are 
generated by several rules (Karle, 1983, 1984b, c), 
which have been generalized and extended by the 
development of a General Rule (Karle, 1984d). In 
the application of the General Rule, it is possible to 
combine various sets of isomorphous replacement 
data or isomorphous replacement data with 
anomalous dispersion data or various sets of 
anomalous dispersion data in many different ways. 
The variety of combinations increases considerably 
when anomalous dispersion data are collected at more 
than one wavelength. 

A number of tests of the General Rule were per- 
formed on exact data computed from the coordinates 
for cytochrome c550.PtC124 - from Paracoccus 
denitrificans (Timkovich & Dickerson, 1976). Values 
for a variety of different types of triplet phase 
invariants were computed from combinations of 
isomorphous replacement and anomalous dispersion 
data at 2.5 A resolution by use of the General Rule. 
The average magnitude of error for thousands of 
invariants ranged from 30 to 45 °. These are significant 
errors to combine with the experimental error of an 
actual application and it would evidently be much 
more desirable if the error inherent in the theory 
could be reduced. 
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